或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏浪涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件用于浪涌保护器的基本元器件有放电间隙充气放电管压敏电阻抑制二极管和扼流线圈等;是25KA820#181s的高压陶瓷气体放电管主要参数Impulse sparkover volt @ 100 V#181s V lt3600 Impulse sparkover volt @ 1 kV#181s V lt4200 陶瓷体放电管耐流强,电容小,响应时间快,耐老化,无光敏效应及不含放射性物质,广泛应用于电信及电子等方面。
两者区别有以下两点1通流容量 气体放电管通流容量可高达60K,而固体放电管最高也只能到达6KA2 响应速度 固体放电管的响应速度要远大于气体放电管3保护效果 对于信号接口电路的保护上,固体放电管的保护效果要远比气体放电管强;当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗,使其两端电压迅速降低,大约为20~50V其雷击过后两端电压响应关系如图1图1 GDT对10700us波的响应关系 二GDT主要特性参数 21DC sparkover Voltage直流击穿电压GDT的直流击穿电压是指在放电管上施加缓慢。
气体放电管的直流击穿电压是以施加一低上升速率 100V s 的电压所确定的另外还有标称直流击穿电压,这种是表示气体放电管的额定值,此额定值是以统计变量为条件得出的它代表直流击穿电压的标准值气体放电管的冲击击穿电压表示是气体放电管的动态特性,一般会给出上升速率 100Vμ s 和 1kVμ s。
气体放电管的基本物理特性
气体放电管的响应速度之快,通常在纳秒级别气体被电场激发后,迅速发生电离和复合反应,产生大量电子和离子在电场作用下,这些电子和离子迅速移动形成电流因此,气体放电管能极短时间内响应电场变化,输出电流这种快速响应使其广泛应用于高频电路快速开关与激光器气体放电管的原理基于气体在电场作用。
为了准确测量放电管的响应时间,通常采用一种方法,即使用一个具有固定波头上升陡度dudt的电压源,将其连接到放电管两端通过测量在电压作用下放电管开始放电的时间点,然后多次重复这个过程,取所有测量结果的平均值,作为该放电管的响应时间这样得到的数值更为可靠,能够反映放电管的性能特性。
气体放电管的工作原理基于其独特的结构当外部电压增加到超越气体原有的绝缘特性时,电极之间的空隙会发生电击穿,从绝缘状态转变为导电状态这个转变会导致放电管导通,此时两极之间的电压会稳定在由放电弧道决定的残压水平上与常见的两极和三极放电管相似,五极放电管的构造基本一致,其最大的特点是。
两者区别有以下两点1通流容量 气体放电管通流容量可高达60K,而固体放电管最高也只能到达6KA2响应速度 固体放电管的响应速度要远大于气体放电管3保护效果 对于信号接口电路的保护上,固体放电管的保护效果要远比气体放电管强。
气体放电管GDT是一种间隙式的防雷保护元件当瞬态电压超过其绝缘强度时,GDT内部的惰性气体被击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平,这种残压一般很低,从而使得与放电管并联的电子设备免受过电压损坏陶瓷气体放电管应用领域较为广泛,在。
1开关型其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过用作此类装置时器件有放电间隙气体放电管闸流晶体管等 2限压型其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非。
测量气体放电管响应特性实验报告
1、从响应时间来慢到快为答案“A”TSS管和TVS管同属于硅保护元件,响应时间是完全一样慢快也取决于瞬间的浪涌电流大小。
2、电容特性 陶瓷放电管的电容值微乎其微,小于3pF,这意味着在高频信号下,其干扰影响较小,能提供良好的瞬态保护然而,陶瓷放电管并非完美无缺挑战一响应速度 由于气体电离存在延迟,其反应时间一般在0203μs,可能会导致尖峰电流漏过,影响保护效果最短响应时间为01μs击穿电压。
3、气体放电管的各种电气特性,如直流击穿电压冲击击穿电压耐冲击电流耐工频电流能力和使用寿命等,能根据使用系统的要求进行调整优化这种调整往往是通过改变放电管内的气体种类压力电极涂敷材料成分及电极间的距离来实现的气体放电管有二极放电管及三极放电管两种类型有的气体放电管带有电极引线。
4、两种器件均属于防雷过压保护元件区别主要是响应速度通流容量残压结电容几个方面一般在对质量要求较高的产品中常常采取组合使用的防护方案,如图所示 视不同场合的需要,第一级采用GDT,第二级采用压敏电阻或防护器件TVS,两级间所串联的缓冲电感热敏电阻PTC是用来保证防护电路的动作时序,即。
转载请注明:玄武区聚富迈设计服务中心 » 放电管 » 测量气体放电管响应特性(测量气体放电管响应特性是什么)
版权声明
本文仅代表作者观点,不代表B5编程立场。
本文系作者授权发表,未经许可,不得转载。