jdl008

压敏串放电管(压敏电阻串联的作用)

jdl008 放电管 2024-11-01 118浏览 0

共模保护采用压敏电阻MOV与气体放电管GDT串联到保护地气体放电管GDT具有较大的绝缘阻抗,可减缓压敏电阻的老化,延长压敏电阻使用寿命;压敏与放电管串联,并在电路二端,中间用电阻或电感串联,后端用TVS并联,降低后级残压这个一般是用在电源的防雷保护上,你如果用通讯接口可以并压敏,直接并放电管就可以,我这边可以免费测试。

在电源防雷中,由于放电管的隔离作用,压敏电阻几乎无泄漏电流流过,这样就大大减缓了压敏电阻因长期流过的泄漏电流所产生的老化现象,同时在保证可靠切断气体放电管工频续流的前提下,能够将压敏电阻的参考电压选的更低一些,以降低其残压和箝位水平;这就能降低压敏电阻的参考电压Uima 而不必顾及由此会引起泄漏电流的增大,从而能较为有效地减缓压敏电阻性能的衰退3由于压敏电阻的参考电压Uima可选得较低,只要放电管能迅速放电导通,则串联支路能给出比单个压敏电阻更低的钳位电压如果还有其他疑问,请百度“绍鑫”,会有更多知识详解。

压敏串放电管的元器件

一般是温度保险丝串联在火线上,但需要与压敏电阻贴紧放电管与压敏电阻串联后,并联在温度保险丝之后不过具体还得看你的各种产品的型号。

由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势放电管保护特性的主要不足之处在于其放电时延较大,动作灵敏度不够理想,对于波头上升陡度较大的雷电波难以有效地抑制压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻由于压敏电阻具有非线性。

压敏电阻的选择需要权衡,不仅要考虑电网的不稳定,还要考虑其精度例如,471KD10压敏电阻的开启电压范围可能小于预期,因此选择开启电压大于470V的压敏电阻更合适而最大通流量则需要根据实际情况进行评估,可能需要通过EMC测试来确定有时候,为了进一步降低残留电压,压敏电阻与气体放电管串联使用,如391。

陶瓷气体放电管与压敏电阻配合应用必知的问题 在电源系统的防雷保护电路中,陶瓷气体放电管与压敏电阻配合应用的方案很常见了,尤其是在通信系统铁路等领域已被广泛应用在电路保护方案中,压敏电阻配合GDT应用,虽然有很多优势,如控制压敏电阻的劣化降低残压等,但是,在实际应用过程中,如果电路设计。

压敏电阻在通过持续大电流后其自身的性能要退化,将压敏电阻与放电管并联起来如图1所示,可以克服这一缺点在放电管尚未导通之前压敏电阻就开始动作,对暂态过电压进行钳位,泄放大电流,当放电管放电导通后它将与压敏电阻进行并联分流,减小了对压敏电阻的通流压力,从而缩短了压敏电阻通大电流的时。

压敏电阻没有续流的说法压敏电阻和气体放电管虽均属于EMC设计的保护元件,但是动作原理是完全不同的压敏电阻是一种限压型保护器件利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护气体放电管是一种开关型保护。

压敏串放电管(压敏电阻串联的作用)

3L相与N相对大地上用压敏串陶瓷放电管这些电路的作用都是用来防雷用,电路都是非常的常见但是压敏电阻的选取的过程中,很多的工程师都是说是经验,对于压敏电阻上的一些参数了解的非常少下图是我们的雷击浪涌的电流组合波形 下面图1与图2都是我们常用的防雷电路 1压敏电阻的选取是要根据我们的。

tvs管串联压敏电阻

1、压敏电阻串联放电管,因两者内阻差异较大,串联后分压不同,可简单理解开启电压为放电管击穿电压,关断电压为压敏电压,击穿电压通常两者接近为好,最常用型号471KD20和2RM4708绝大多数情况压敏电压可依据22倍交流1416倍直流取值环境恶劣时防止频繁动作,可将电压值提高到600V,甚至800V。

2、压敏电阻具有较大的寄生电容,当用于交流电源系统保护时,往往会在正常运行状态下产生数值可观的泄露电流,这样大的泄露电流会对系统产生影响,通过压敏电阻串联气体放电管的组合,可以有效解决问题并减缓压敏电阻性能的衰退。

3、气体放电管与压敏电阻可以并联组合,也可以串联组合并联组合无法解决放电管可能产生的续流问题,不宜用于交流电源系统保护串联组合电路,放电管起着一个开关作用,能使压敏电阻几乎无泄漏电流,不用顾忌压敏电阻性能的衰退。

4、这种串联组合电路中,放电管起着一个开关作用,在没有暂态过电压作用时,它能将压敏电阻与系统隔离开,使压敏电阻中几乎无泄漏电流,可有效减缓压敏电阻性能衰退。

压敏串放电管(压敏电阻串联的作用)

版权声明

本文仅代表作者观点,不代表B5编程立场。
本文系作者授权发表,未经许可,不得转载。

继续浏览有关 压敏串放电管 的文章